ON THE COVER:

Arterial cannulation is frequently used for continuous blood pressure monitoring and blood sampling in the operating room and intensive care unit. Arterial cannulation in pediatric patients is challenging, even for experienced anesthesiologists. In this issue of Anesthesiology, Kim et al. evaluated the posterior tibial artery as an alternative arterial cannulation site to the radial artery in small children using ultrasound guidance. In an accompanying Editorial View, Adler and Litman advocate for the standard use of ultrasound guidance to facilitate arterial cannulation in children of all ages, and for practitioners to use this technique to evaluate alternate cannulation sites, in addition to the radial artery, when invasive monitoring is required.

- Kim et al.: Posterior Tibial Artery as an Alternative to the Radial Artery for Arterial Cannulation Site in Small Children: A Randomized Controlled Study, p. 423
- Adler and Litman: Out of the Darkness and into the Era of Direct Visualization and Deliberate Practice, p. 408

THIS MONTH IN ANESTHESIOLOGY

SCIENCE, MEDICINE, AND THE ANESTHESIOLOGIST

INFOGRAPHICS IN ANESTHESIOLOGY

EDITORIAL VIEWS

Tranexamic Acid: What Is Known and Unknown, and Where Do We Go From Here? 405
S. M. Goobie and S. M. Frank

Out of the Darkness and into the Era of Direct Visualization and Deliberate Practice 408
A. C. Adler and R. S. Litman

Simulation for Assessment of the Practice of Board-certified Anesthesiologists 410
C. A. Lien, M. A. Warner, and J. P. Rathmell

PERIOPERATIVE MEDICINE

CLINICAL SCIENCE

Intravenous Tranexamic Acid Bolus plus Infusion Is Not More Effective than a Single Bolus in Primary Hip Arthroplasty: A Randomized Controlled Trial 413

In a randomized, blinded trial comparing an initial bolus of tranexamic acid with an initial bolus followed by an infusion, blood loss was comparable in each group. Combining current results with five previous trials in a meta-analysis also shows no benefit of adding an infusion of tranexamic acid to an initial bolus.
Posterior Tibial Artery as an Alternative to the Radial Artery for Arterial Cannulation Site in Small Children: A Randomized Controlled Study

In an observational study of 60 children (median age, 13 months), radial, dorsalis pedis, and posterior tibial artery diameters averaged 1.5, 1.2, and 1.6 mm, respectively. In a prospective randomized study in 234 children (median age, 6 months), arterial cannulation first-attempt success rate was 83, 45, and 75% for radial, dorsalis pedis, and posterior tibial arteries, respectively. For ultrasound-guided arterial cannulation in small children, the posterior tibial artery is a reasonable alternative to the radial artery.

Videolaryngoscopy versus Fiber-optic Intubation through a Supraglottic Airway in Children with a Difficult Airway: An Analysis from the Multicenter Pediatric Difficult Intubation Registry
N. E. Burjek, A. Nishisaki, J. E. Fiadjoie, H. D. Adams, K. N. Peeples, V. T. Raman, P. N. Olomu, P. G. Kovatsis, and N. Jagannathan; for the PeDI Collaborative Investigators

A clinical registry collecting information of 1,603 pediatric anesthesia cases with difficult tracheal intubation with conventional direct laryngoscopy revealed similar first-attempt success rates for fiber-optic intubation via supraglottic airway and videolaryngoscopy, whereas the former was more successful than the latter in infants.

Reversal of Vecuronium-induced Neuromuscular Blockade with Low-dose Sugammadex at Train-of-four Count of Four: A Randomized Controlled Trial

Sugammadex 0.5 mg/kg did not produce prompt and satisfactory neuromuscular recovery when administered at a threshold train-of-four count of four after vecuronium administration. Sugammadex 1.0 mg/kg adequately reversed this level of block, although recovery took twice as long as has been reported after rocuronium. Recurrent neuromuscular block occurred after treatment of this level of block with sugammadex doses of 0.5 to 2.0 mg/kg.

Mini-fluid Challenge of 100 ml of Crystalloid Predicts Fluid Responsiveness in the Operating Room
M. Biais, H. de Courson, R. Lanchon, B. Pereira, G. Bardonneau, M. Griton, M. Sesay, and K. Nouette-Gaulain

The authors provide a prospective trial demonstrating that a mini-fluid challenge of 100 ml can predict the hemodynamic effects of larger fluid boluses in neurosurgical patients. The study has important implications to future fluid challenge algorithms and patient management to maximize hemodynamic stability and minimize the risk of fluid overload in the operating room.

Association of Testosterone Replacement Therapy and the Incidence of a Composite of Postoperative In-hospital Mortality and Cardiovascular Events in Men Undergoing Noncardiac Surgery

In a single-center observational analysis, testosterone replacement therapy was not associated with a measurable increase or decrease in cardiovascular events or mortality within 30 days of surgery.

Accuracy of Capillary and Arterial Whole Blood Glucose Measurements Using a Glucose Meter in Patients under General Anesthesia in the Operating Room

The authors have performed a study in the operating room of new glucose meter technology with hematocrit and interference correction on capillary and arterial blood samples in comparison with reference arterial whole blood glucose measurements by a blood gas analyzer. The authors found that arterial and capillary blood glucose measurements with the glucose meter did not meet established guidelines for intensive blood glucose control, suggesting caution be exercised when using glucose meters for intravenous glycemic control protocols.
Simulation-based Assessment of the Management of Critical Events by Board-certified Anesthesiologists

To assess the technical and behavioral performance of board-certified anesthesiologists, those who were already attending simulation courses for American Board of Anesthesiology Maintenance of Certification participated in standardized study simulation scenarios that were video recorded for later scoring by blinded trained raters. In simulated emergencies, participants successfully completed approximately 80% of critical performance elements, while approximately 25% received low holistic rating. Higher-rated performances were not associated with previous simulation experience.

BASIC SCIENCE

Propofol Affects Neurodegeneration and Neurogenesis by Regulation of Autophagy via Effects on Intracellular Calcium Homeostasis

H. Qiao, Y. Li, Z. Xu, W. Li, Z. Fu, Y. Wang, A. King, and H. Wei

In neural progenitor cell cultures, only extremely high concentrations of propofol for 24 h caused cell damage and impaired neuronal proliferation. Propofol effects appeared related to autophagy.

A Subregion of the Parabrachial Nucleus Partially Mediates Respiratory Rate Depression from Intravenous Remifentanil in Young and Adult Rabbits

Respiratory rate depression produced by intravenously administered remifentanil could be substantially reversed with localized naloxone injection into a subregion of the parabrachial nucleus of the decerebrate rabbit, confirming the relevance of that area in opioid-induced respiratory depression.

PAIN MEDICINE

Inhibition of Metabotropic Glutamate Receptor Subtype 1 Alters the Excitability of the Commissural Pyramidal Neuron in the Rat Anterior Cingulate Cortex after Chronic Constriction Injury to the Sciatic Nerve

S.-H. Gao, L.-L. Shen, H.-Z. Wen, Y.-D. Zhao, and H.-Z. Ruan

In a rodent model of chronic constrictive injury, injury-induced hyperactivity of commissural fibers was associated with a reduction in voltage-gated potassium channel subunit 2–mediated current; metabotropic glutamate receptor inhibition produced an analgesic effect, restored voltage-gated potassium channel subunit 2 currents, and reduced hyperexcitability. The data support the notion that the analgesic efficacy of metabotropic glutamate receptor inhibition is in part mediated by reducing anterior cingulate cortex output to the contralateral cerebral cortex.

Liver X Receptor α Is Involved in Counteracting Mechanical Allodynia by Inhibiting Neuroinflammation in the Spinal Dorsal Horn

In male rodent models of spared nerve injury, intrathecal liver X receptor (LXR) agonists reduced mechanical allodynia. This effect was not observed in animals with a mutation in the LXRα receptor subtype. LXR agonist inhibited glial cell activation and expression of cytokines in the spinal dorsal horn.

Astrogial MicroRNA-219-5p in the Ventral Tegmental Area Regulates Nociception in Rats

MiR-219-5p expression in the ventral tegmental area is reduced in the setting of hind paw inflammation and nociceptive sensitization. Nociceptive sensitization related to reduced miR-219-5p expression was related to astrocytic activation.
CONTENTS

EDUCATION

IMAGES IN ANESTHESIOLOGY

Ultrasound-guided Intraarticular Knee Injection
N. Sadeghi, A. Kumar, J. Kim, and J. Dooley 565

Isolated Persistent Left-sided Superior Vena Cava
D. S. Shafiepour, K. S. Ladha, M. Parotto, N. S. Paul, and K. M. McRae 566

T-wave Alternans and Long QT Syndrome
R. S. Isserman, A. F. Simpao, A. J. Schwartz, and M. F. Pearsall 567

CLINICAL CONCEPTS AND COMMENTARY

\[\text{I-AIM (Indication, Acquisition, Interpretation, Medical Decision-making) Framework for Point of Care Lung Ultrasound}\]
R. Kruisselbrink, V. Chan, G. A. Cibinel, S. Abrahamson, and A. Goffi 568

The I-AIM (Indication, Acquisition, Interpretation, Medical decision-making) model is a conceptive framework uniquely applicable to every point of care ultrasound application. We present a systematic comprehensive approach to lung ultrasound based on the I-AIM framework.

MIND TO MIND

Medical Student in the Operating Room
R. DePew 583

CORRESPONDENCE

Acute Traumatic Coagulopathy: Thrombin Is the Driver!
K. A. Tanaka, M. A. Mazzeffi, and B. Williams 585

In Reply
K. Brohi and R. A. Davenport

Dealing with Ophthalmic Chemosurgery Complications
M.-C. Nghe and A. Godier 586

In Reply
J. H. Scharoun

REVIEWS OF EDUCATIONAL MATERIAL

589
INSTRUCTIONS FOR AUTHORS

The most recently updated version of the Instructions for Authors is available at www.anesthesiology.org. Please refer to the Instructions for the preparation of any material for submission to ANESTHESIOLOGY.

Manuscripts submitted for consideration for publication must be submitted in electronic format. The preferred method is via the Journal's Web site (http://www.anesthesiology.org). Detailed directions for submissions and the most recent version of the Instructions for Authors can be found on the Web site (http://www.anesthesiology.org). Books and educational materials should be sent to Alan Jay Schwartz, M.D., M.S.Ed., Director of Education, Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, 34th Street and Civic Center Blvd., Room 9327, Philadelphia, Pennsylvania 19104-4399. Requests for permission to duplicate materials published in ANESTHESIOLOGY should be submitted in electronic format, to the Permissions Department (journalpermissions@lww.com). Advertising and related correspondence should be addressed to Advertising Manager, ANESTHESIOLOGY, Wolters Kluwer Health, Inc., Two Commerce Square, 2001 Market Street, Philadelphia, Pennsylvania 19103 (Web site: http://www.wkadcenter.com). Publication of an advertisement in ANESTHESIOLOGY does not constitute endorsement by the Society or Wolters Kluwer Health, Inc. of the product or service described therein or of any representations made by the advertiser with respect to the product or service.

Annual Subscription Rates: United States—$981 Individual, $1876 Institution, $354 In-training. Rest of World—$930 Individual, $2084 Institution, $354 In-training. Single copy rate $189. Subscriptions outside of North America must add $54 for airfreight delivery. Add state sales tax, where applicable. The GST tax of 7% must be added to all orders shipped to Canada (Wolters Kluwer Health, Inc.’s GST Identification #985524239). Publications Mail Agreement #1119672). Indicate in-training status and name of institution. Institution rates apply to libraries, hospitals, corporations, and partnerships of three or more individuals. Subscriptions outside the United States must be prepaid. Prices subject to change without notice. Subscriptions will begin with currently available issue unless otherwise requested. All orders must be prepaid and may be paid by bank draft, money order, personal check, or credit card. Institutions may also subscribe or online with print, please contact the Ovid Regional Sales Office near you or visit www.ovid.com/site/index.jsp and select Contact and Locations.

Address for non-member subscription information, orders, or change of address (except Japan): Wolters Kluwer Health, Inc., 14700 Citicorp Drive, Bldg 3, Hagerstown, MD 21742; phone: 800-638-3030; fax: 301-223-2400. In Japan, contact Wolters Kluwer Health Japan Co., Ltd., Forecast Mita Building 5th floor, 1-3-31 Mita Minato-ku, Tokyo, Japan 108-0073; phone: +81 3 5427 1969; email: journal@wkjapan.co.jp.

Address for member subscription information, orders, or change of address: Members of the American Society of Anesthesiologists receive the print and online journal with their membership. To become a member or provide a change of address, please contact the American Society of Anesthesiologists, 1061 American Lane, Schaumburg, Illinois 60173-4973; phone: 847-825-5586; fax: 847-825-1692; email: membership@ASAhq.org. For all other membership inquiries, contact Wolters Kluwer Health, Inc., Customer Service Department, P.O. Box 1610, Hagerstown, MD 21740; phone: 800-638-3030; fax: 301-223-2400.

Address for member subscription information, orders, or change of address: Address for non-member subscription information, orders, or change of address: Members of the American Society of Anesthesiologists receive the print and online journal with their membership. To become a member or provide a change of address, please contact the American Society of Anesthesiologists, 1061 American Lane, Schaumburg, Illinois 60173-4973; phone: 847-825-5586; fax: 847-825-1692; email: membership@ASAhq.org. For all other membership inquiries, contact Wolters Kluwer Health, Inc., Customer Service Department, P.O. Box 1610, Hagerstown, MD 21740; phone: 800-638-3030; fax: 301-223-2400.

Contact and Locations: Visit www.ovid.com/site/index.jsp and select Contact and Locations.