Carbon Dioxide and the Cerebral Circulation

Johnny E. Brian, Jr., M.D.*

THE arterial partial pressure of carbon dioxide (P_{a\text{CO}_2}) is an important regulator of the cerebral circulation, and a large body of literature describes this relation. This review summarizes the current state of knowledge of the effect of CO₂ on cerebral physiology, focusing first on mechanisms of CO₂-induced alteration of vascular tone, then on the effect of CO₂ on cerebral vascular regulation, and finally on CO₂ manipulation in patient care.

Mechanisms

This section summarizes information regarding the site of action of CO₂ on the cerebral circulation and cellular mechanisms important in CO₂-mediated changes in cerebral vascular tone. The CO₂-mediated alteration of brain extracellular pH is the initial step leading to changes in vascular tone. The effect of pH on cerebral vascular tone is mediated by nitric oxide (NO), prostanooids, cyclic nucleotides, potassium channels, and intracellular calcium. Most data available support an important role for each of these mediators in the response of the cerebral circulation to CO₂. However, contradictory data exist, and there is no comprehensive understanding of how these mediators interact to control cerebral vascular tone. Further, mechanisms differ in neonates and adults.

Site of Action of Carbon Dioxide

Increased carbon dioxide tension (P_{\text{CO}_2}) relaxes cerebral arteries \textit{in vitro}, which indicates that CO₂ can cause cerebral vascular relaxation independent of extravascular cells. In \textit{vivo}, cerebral arteries respond to highly localized perivascular alteration of P_{\text{CO}_2} and pH, which indicates that the mechanisms that affect cerebral vascular tone are localized to the area of the blood vessel wall. Cellular elements that could contribute to the cerebral vascular response to CO₂ include vascular cells (endothelium and smooth muscle) and extravascular cells (perivascular nerves, parenchymal neurons, and glia). In adult animals, removal of the endothelium \textit{in vitro}\(^1\) or endothelial damage \textit{in vitro}\(^5\) does not alter the response of cerebral arteries to hypercapnia. This suggests that in adults the endothelium is not involved in the response to CO₂. In neonates, however, the endothelium does contribute to cerebral vasodilation during hypercapnia.\(^7\) Tetrahydroxothiazine, which blocks sodium channels and prevents neuronal depolarization, does not reduce CO₂-mediated cerebral vasodilation, indicating that depolarization of perivascular nerves or parenchymal neurons is not important.\(^5\)\(^9\) Selective destruction of cortical neurons also does not alter the cerebral vascular response to hypercapnia.\(^10\) Although these data in adults suggest that the endothelium, parenchymal neurons, and perivascular nerves are not important during hypercapnia-induced cerebral vasodilation, it is also possible that these cells produce overlapping vasodilator messengers, and removal of an individual messenger is not sufficient to alter the response. No data exist regarding a potential role for glia in the CO₂ response of the cerebral circulation.

\textit{In vitro} data suggest that extravascular cells are not important in the response of cerebral arteries to increased P_{a\text{CO}_2}. However, the relative contribution of vascular and extravascular cells to CO₂-mediated vasodilation cannot be assessed by comparing \textit{in vivo} and \textit{in vitro} studies. Although isolated cerebral vessels relax with increased P_{\text{CO}_2}, technical differences between \textit{in vivo} and \textit{in vitro} studies make it impossible to know if vasodilation is equal in isolated vessels compared with

* Associate Professor.

Received from the Department of Anesthesia, The University of Iowa, Iowa City, Iowa. Submitted for publication February 14, 1997. Accepted for publication December 29, 1997.

Address reprint requests to Dr. Brian: Department of Anesthesia, The University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242.

Address electronic mail to: eddie-brian@uiowa.edu

Key words: Brain; blood flow; hypercapnia; hyperventilation; hypocapnia; intracranial pressure; mechanisms; review.

Anesthesiology, V 88, No 5, May 1998
in vivo blood vessels. Thus, in vivo, it is possible that dilation is larger, and some of the effect of CO₂ on cerebral vessels is mediated by extravascular cells.

pH

When cerebral vascular tone is altered by a change in P_{CO₂}, it is possible that CO₂ itself, a CO₂-mediated change in pH, or both are signals leading to a change in vascular tone. Applying acidic or alkalotic solutions to the brain dilates or constricts cerebral arteries in vivo, which indicates that pH can affect cerebral vascular tone. In humans, Severinghaus et al. showed that cerebral blood flow (CBF) was normal during chronic hypocapnia, which suggests that CO₂ itself does not alter cerebral vascular tone. Kontos et al. offered the best evidence that pH rather than CO₂ is the controlling messenger for CO₂-mediated alterations of cerebral vascular tone. Applying artificial cerebrospinal fluid (CSF) topically to the cerebral cortex of anesthetized cats, they showed that the diameter of cerebral arterioles responded only to changes in pH, regardless of fluid P_{CO₂}. During alterations of fluid pH, the pH of the artificial CSF was held constant by altering its bicarbonate concentration. Because CO₂ diffuses freely through cell membranes and bicarbonate does not, these data suggest that extracellular pH is more important than intracellular pH in altering cerebral vascular tone. Data in isolated cerebral arteries also indicate that extracellular pH is more important than intracellular pH in hypercapnic-induced dilation of cerebral arteries. However, changes in extracellular pH do affect intracellular pH in cerebral vascular smooth muscle, and to complex interactions between extracellular and intracellular pH, it is not known whether extracellular or intracellular pH controls cerebral vascular tone.

Cellular Mechanisms

Changes in pH can exert effects on smooth muscle tone through second messenger systems and by altering vascular smooth muscle calcium concentration directly. This section reviews the role of prostanoids, NO, cyclic nucleotides, potassium channels, and intracellular calcium concentration in CO₂-mediated changes in cerebral vascular tone.

Prostanoids. Production of prostaglandins is controlled by the availability of arachidonic acid, which is cleaved from membrane lipids by phospholipase. Cyclooxygenase converts arachidonic acid to prostaglandin H₂, which is subsequently modified by other enzymes to yield both vasoconstrictor and vasodilator prostanoids. The principal vasoactive prostanoids in the brain are prostaglandin E₂ (PGE₂) and prostacyclin (PGI₂), both dilator prostanoids, and the constrictor prostanoid prostaglandin F₂₀ (PGF₂₀). In adult humans and animals, some studies reported that indomethacin, a cyclooxygenase inhibitor, reduces hypercapnia-induced cerebral vasodilatation. However, other studies reported that indomethacin does not reduce hypercapnia-induced cerebral vasodilation. Although indomethacin reduces hypercapnia-induced increases in CBF in humans, aspirin and naproxen have no effect, even when there is an equal degree of cyclooxygenase inhibition. Other have reported in animals and humans that the cyclooxygenase inhibitors aspirin, sulindac, amfenac, and diclofenac do not alter the response of the cerebral circulation to hypercapnia. In adult humans and animals, brain arachidonic acid, PGI₂, and PGE₂ concentrations do not increase during hypercapnia overall, data in adults indicate that cyclooxygenase products are not responsible for cerebral vasodilation during hypercapnia. The effect of indomethacin on hypercapnia-induced cerebral vasodilation is difficult to resolve. However, indomethacin does inhibit enzymes other than cyclooxygenase, including phosphodiesterase, phospholipase A₂, and cyclic adenosine monophosphate (cAMP)-dependent protein kinase, which indicate that the effect of indomethacin is nonselective.

The neonatal and adult cerebral circulation responds to CO₂ in a similar way, although the magnitude of the response may be less in neonates (see below). In neonates, prostanoids are important in regulating the cerebral circulation. In neonatal animals, damage in vivo to cerebral vascular endothelium prevents hypercapnia-mediated increases in CSF PGI₂ concentration and dilation of cerebral blood vessels. Inhibition of phospholipase, which prevents the release of arachidonic acid and the production of prostanoids, abolishes the response of the neonatal circulation to hypercapnia and extracellular acidosis. Further, indomethacin inhibits hypercapnia-induced cerebral vasodilatation and decreases in CSF PGI₂ and PGE₂ concentrations in newborn animals. In human neonates, indomethacin abolishes hypercapnic-induced increases in CBF. These data support the concept that in neonates, vasodilator prostaglandins derived from the vascular endothelium are important in the response to hypercapnia. However, an alternative role for prostaglandins has

Anesthesiology. V 88, No 5, May 1998
been suggested by some investigators, who report in newborn animals that, after inhibition of cyclo-oxygenase or endothelial injury, application to the brain of a very low concentration of vasodilator prostanoids restores hypercapnia-induced cerebral vasodilation.7,34 These data suggest that prostanoids may not be direct mediators of hypercapnia-induced cerebral vasodilation, but rather that a basal level of prostanoids is necessary to "permit" hypercapnia to dilate cerebral blood vessels. Overall, data indicate that cyclo-oxygenase products are important regulators in the hypercapnic response of the newborn but not adult cerebral circulation.

Nitric Oxide. Nitric oxide is an important regulator of cerebral vascular tone and is produced by a family of NO-synthase enzymes in brain vascular endothelial cells, some perivascular nerves, parenchymal neurons, and glia.35,36 Nitric oxide activates guanylate cyclase in vascular smooth muscle, increasing the intracellular concentration of cyclic guanosine monophosphate (cGMP), causing vasorelaxation.36 In adult animals, inhibition of NO-synthase activity reduces cerebral vasodilation during hypercapnia37-41 and extracellular acidosis-mediated cerebral vasodilation.39 This indicates that NO is one vasodilator important in the response of the cerebral circulation to hypercapnia and acidosis. Although these studies indicate that NO is important in CO\textsubscript{2}-induced cerebral vasodilation, they also suggest that NO is not the only vasodilator signal, because after inhibition of NO-synthase, 10–70% of hypercapnia-mediated cerebral vasodilation remains. The wide range in the reduction of cerebral vasodilation may reflect use of different NO-synthase inhibitors, doses of inhibitors, timing of doses, degree of hypercapnia, and species differences. During severe hypercapnia (\textit{P}$_{\text{a,CO}_2}$ > 100 mmHg), CO\textsubscript{2}-mediated dilation of cerebral arterioles cannot be reduced by inhibition of NO-synthase, which indicates that cerebral vasodilation during severe hypercapnia does not depend on NO.37 In contrast to adults, NO does not play a role in hypercapnia-induced cerebral vasodilation in neonatal animals.32

Although it might be surmised from these studies that hypercapnia increases the synthesis of NO, which leads to cerebral vasodilation, some investigations suggest an alternative explanation. The brain tonically produces NO, creating a constant vasodilator signal.36 Inhibition of NO-synthase removes tonic NO and increases the resting tone in cerebral blood vessels, which could alter the response to other vasoactive signals, such as hypercapnia. Thus inhibition of NO-synthase could cause a direct effect by preventing hypercapnia-mediated activation of NO-synthase and indirect effects by reducing basal NO and cGMP levels and increasing resting tone of blood vessels. After inhibition of NO-synthase, low concentrations of NO-dependent and NO-independent vasodilators can restore cerebral vascular tone to baseline.7 However, NO-dependent but not NO-independent vasodilators can restore the response to hypercapnia.3 Furthermore, a cell-permeable cGMP analog can also restore basal vascular tone and the response to hypercapnia after inhibition of NO-synthase.9 These data suggest that changes in basal tone are not important, because NO-independent vasodilators cannot restore the response to hypercapnia. These data indicate that NO and cGMP are important in CO\textsubscript{2}-mediated dilation of cerebral blood vessels. However, NO and cGMP may not be the final mediators of vasodilation, but rather that basal levels of NO and cGMP "permit" hypercapnia to dilate cerebral vessels. Nitric oxide may also function in a "permissive" role for other vasodilators in the cerebral circulation.42,43

In the brain, vascular endothelium expresses the endothelial isoform of NO-synthase, and some perivascular nerves, parenchymal neurons, and glia express the neuronal isoform of NO-synthase.36,44-46 All are potential sources of NO important for hypercapnia-induced cerebral vasodilation.50 Damage to vascular endothelium \textit{in vivo} does not reduce hypercapnia-induced vasodilation,5 which indicates that the endothelial isoform of NO-synthase is not the source of NO involved in hypercapnia-induced cerebral vasodilation. Selective inhibition of the neuronal isoform of NO-synthase reduces hypercapnia-induced cerebral vasodilation, which indicates that the activity of neuronal NO-synthase is important.47 Cerebral perivascular nerves originating from the sphenopalatine ganglia release NO but do not appear to be important in hypercapnia, because destruction of these nerves does not alter the cerebral vascular response to hypercapnia.48 Furthermore, tetrodotoxin, which blocks sodium channels and prevents neuronal depolarization, does not reduce hypercapnia-induced cerebral vasodilation.9 This indicates that the activation of neuronal NO-synthase by depolarization of perivascular nerves or parenchymal neurons is not important in hypercapnia-induced cerebral vasodilation. The NO responsible for hypercapnia-induced cerebral vasodilation could arise either from parenchymal neurons producing NO in the absence of depolarization or from...
JOHNNY E. BRIAN, JR.

glia. However, selective destruction of cortical neurons does not alter hypercapnia-induced cerebral vasodilation, which indicates that parenchymal neurons are not involved in the response to hypercapnia. Thus data suggest that, in adult animals, the vascular endothelium, parenchymal neurons, and perivascular nerves are not the source of NO important in hypercapnia-mediated vasodilation. Neuronal NO-synthase appears to be the source of NO involved in hypercapnia-induced cerebral vasodilation, but the cellular location is not known. Glia, which express neuronal NO-synthase, could be the source of NO, but it is also possible that multiple, overlapping sources of NO may be involved in hypercapnia-induced cerebral vasodilation.

In contrast to hypercapnia, alterations in cerebral vascular tone during hypocapnia do not depend on NO. In adult rabbits and rats, cerebral vasocostriction during hypocapnia is not altered by inhibition of NO-synthase.

Cyclic Nucleotides. Changes in cyclic nucleotide concentrations are important in the signaling cascade leading from pH to changes in vascular smooth muscle tone. Nitric oxide activates guanylate cyclase in vascular smooth muscle, increasing the cGMP concentration while vasodilator prostanoids (PGF₂α, PGI₂) activate adenylate cyclase and increase the cAMP concentration.

In adult rats, hypercapnia increases brain cGMP concentration, consistent with the theory that hypercapnia increases NO production, which then increases cGMP. However, in isolated cerebral arteries from adult rats, increased PCO₂ relaxes arteries but does not increase cGMP, consistent with the “permissive” hypothesis in which increases in NO and cGMP are not required for CO₂-mediated dilation of cerebral blood vessels. Cyclic GMP is important in hypercapnia; however, as after inhibition of NO-synthase, infusion of a low concentration of a stable cGMP analog hypercapnia-induced vasodilation in the brain. As with NO, it is not clear in adult animals whether cGMP functions as a vasodilator mediator during hypercapnia or whether basal levels of cGMP are necessary to “permit” hypercapnia-induced cerebral vasodilation to occur.

In neonatal pigs, hypercapnia causes cerebral vasodilation and increased brain PGI₂ and cAMP concentration; inhibition of cyclooxygenase prevents these changes. These data suggest that cAMP mediates vasodilation during hypercapnia in neonates. Although vasodilator prostanoids can act permissively for hypercapnia in neonates, it is not known whether cAMP can play a similar permissive role.

Potassium Channels. Recent evidence suggests that vascular smooth muscle potassium channels play an important role in regulating cerebral vascular tone. In vascular smooth muscle, the opening of potassium channels allows potassium (the major intracellular cation) to diffuse out of the cell, making the interior of the cell more negative (hyperpolarized). When the cell is hyperpolarized, voltage-gated calcium channels reduce the influx of extracellular calcium, decreasing intracellular calcium concentration and reducing vascular smooth muscle tone.

One subgroup of potassium channels is ATP sensitive (K₅ ATP). Decreasing pH increases the open-state probability of K₅ ATP channels (which would hyperpolarize cells), supporting the concept that during hypercapnia, activation of K₅ ATP channels could cause vascular smooth muscle hyperpolarization and cerebral vasodilation. Furthermore, extracellular acidosis hyperpolarizes cerebral vascular smooth muscle, also supporting the concept that changes in vascular smooth muscle membrane potential are important during hypercapnia. In large cerebral arteries in vitro, acidosis-induced relaxation depends partially on activation of K₅ ATP channels. In adult animals, cerebral vasodilation during modest (PaCO₂ ≈ 55 mmHg), but not marked, hypercapnia can be attenuated by blockade of K₅ ATP channels.

A second potassium channel is the large conductance calcium-activated potassium channel. This channel can be activated by cGMP and NO, hyperpolarizing vascular smooth muscle and reducing intracellular calcium. It contributes to cGMP-dependent vasodilation in small cerebral arterioles but not in large cerebral arteries. In contrast to K₅ ATP channels, large conductance calcium-activated potassium channels do not contribute to acidosis-induced vasodilation in isolated large cerebral arteries. The lack of importance of these channels during acidosis-induced vasodilation in large cerebral arteries may reflect the regional heterogeneity of potassium channel distribution.

A third potassium channel is the delayed rectifier potassium channel (Kᵢ). This channel is normally activated by membrane depolarization, resulting in repolarization by allowing potassium to exit the cell. In cerebral vascular smooth muscle, Kᵢ channels are pH sensitive, and acidosis increases Kᵢ conductance, hyperpolarizing the cell. This suggests that Kᵢ channels should be activated during hypercapnia and contribute to dilation.

Anesthesiology, V 88, No 5, May 1998
However, in isolated large cerebral arteries, blockade of K_v channels does not alter dilation to acidosis. As with large conductance calcium-activated potassium channels, this discrepancy may reflect regional differences in potassium channel distribution in the cerebral circulation.

Intracellular Calcium. Vascular smooth muscle tone is controlled by intracellular calcium concentration. Under baseline conditions, intracellular calcium is approximately 0.1 μM, which is 10,000 times less than extracellular calcium. Small changes in plasma membrane calcium conductance may have a significant effect on both intracellular calcium concentration and vascular smooth muscle tone. During alkalosis, cerebral vascular smooth muscle intracellular calcium concentration increases, which increases tone. In cerebral vascular smooth muscle, changes in extracellular pH affect intracellular calcium concentration and vascular tone. Extracellular acidosis-induced dilation of cerebral arterioles can be prevented by elevation of extracellular calcium, which suggests that reduced entry of calcium into vascular smooth muscle is important in the reduction of vascular tone by acidosis. Cyclic nucleotides (cAMP and cGMP) affect vascular tone in part by altering smooth muscle calcium concentration. Both cAMP and cGMP appear to activate their respective protein kinases and phosphorylate calcium channels, which reduces the entry of calcium into vascular smooth muscle. Cyclic nucleotides also activate potassium channels, leading to membrane hyperpolarization and inactivation of voltage-gated calcium channels, reducing intracellular calcium concentration.

Summary of Mechanisms

The system of mediators that link extracellular pH to cerebral vascular tone is complex and interrelated (fig. 1). The initial step is alteration of extracellular pH, and the final common mediator is intracellular calcium concentration. In adults, cerebral vasodilation during hypercapnia is mediated in part by NO, which increases cGMP concentration. Cyclic GMP exerts several effects to decrease intracellular calcium, including activation of K_v channels and the direct reduction of calcium entry through calcium channels. Nitric oxide can also activate potassium channels directly and thereby hyperpolarize and relax vascular smooth muscle. Some data suggest that NO and cGMP are not the direct mediators during hypercapnia but rather function in a "permissive" way to allow vasodilation. The cellular source

Anesthesiology, V 88, No 5, May 1998

Fig. 1. Altering the partial pressure of carbon dioxide in arterial blood (PaCO₂) changes extracellular pH, which is the initial step leading to changes in vascular smooth muscle (VSM) intracellular calcium concentration and vascular tone. In adult animals, hypercapnia may activate the neuronal isoform of NO-synthase (nNOS), increasing NO production and cyclic guanosine monophosphate (cGMP) concentration in VSM. Both NO and cGMP can activate potassium channels, which hyperpolarize VSM. Membrane hyperpolarization inhibits voltage-gated calcium channels, which reduces VSM intracellular calcium concentration and causes vascular relaxation. In addition, cGMP can inhibit calcium channels directly and reduce intracellular calcium concentration in VSM. In adult humans, the cellular location of nNOS is not known. Further, some data suggest that in adults, NO and cGMP may not function as vasodilators during hypercapnia, but rather basal levels of NO and cGMP are necessary to "permit" hypercapnic vasodilatation (see the text for further details). Extracellular acidosis can also activate potassium channels directly, hyperpolarizing VSM and reducing intracellular calcium concentration. During hypercapnia in neonates, cyclo-oxygenase, located in the vascular endothelium, may increase the production of vasodilator prostaglandins, which then activate adenylate cyclase, producing cyclic adenosine monophosphate (cAMP) in VSM. However, as with NO in adults, prostaglandins may function in a permissive role for hypercapnic-induced cerebral vasodilatation in neonates. Little is known about the mechanism of hypoxic-induced cerebral vasoconstriction, other than changes in extracellular pH and VSM intracellular calcium concentration.
of NO important during hypercapnia is unknown but appears to involve the neuronal isofrm of NO-synthase. In neonates, prostanoids and cAMP function in a way that is analogous to NO and cGMP during hypercapnia. However, in neonates the source of prostanoids is the vascular endothelium. Other than changes in pH and vascular smooth muscle intracellular calcium concentration, little is known about subcellular mechanisms that are important during cerebral vasoconstriction from hypoxia.

Carbon Dioxide and Cerebral Vascular Regulation

Alteration of PaCO₂ affects CBF and may interact with several physiologic or pathophysiologic processes in the brain. This section reviews (1) the effect of CO₂ on CBF and cerebral blood volume (CBV), (2) the effect of anesthetics on the CO₂ response of the cerebral circulation, (3) the potential interactions of CO₂ with other processes that regulate CBF, and (4) the possibility for hypoxia-induced cerebral ischemia in the normal brain.

Carbon Dioxide and Cerebral Blood Flow

The relative change in CBF during variations of PaCO₂ depends on several factors, including baseline CBF, cerebral perfusion pressure, and anesthetic drugs. However, in a wide variety of subjects and conditions, most studies report a change in global CBF of 1–2 ml·100 g⁻¹·min⁻¹ for each 1 mmHg change in PaCO₂. Reducing PaCO₂ to 20–25 mmHg decreases the global CBF by 40–50%, and further reductions of PaCO₂ do not reduce CBF any further. Increasing the PaCO₂ to 80 mmHg or more produces a maximal increase in CBF of 100–200% in anesthetized animals. In awake animals, however, increasing the PaCO₂ to 80 mmHg increases CBF by six times, but one half of the increase in CBF is a result of endogenous catecholamine release and activation of neuronal metabolism. This suggests that in awake subjects, severe hypercapnia may increase the flow by two mechanisms, with a direct effect of CO₂ on cerebral blood vessels and an indirect effect by increasing brain metabolism and blood flow.

Brain blood flow is not homogeneous, and areas of the brain that receive more blood flow have a steeper flow response to changes in PaCO₂. For example, in cats with a baseline cortical blood flow of 86 ml·100 g⁻¹·min⁻¹, the slope of the CO₂ response was a 1.7-ml change in CBF for each 1 mmHg change in PaCO₂. In contrast, spinal cord blood flow was 46 ml·100 g⁻¹·min⁻¹ with a slope of 0.9. Similar findings have been reported in animals and humans. The observation that baseline CBF influences the response of CBF to changes in PaCO₂ also holds true when CBF is elevated artificially, as by inhalational anesthetics.

Sustained Hypocapnia and Cerebral Blood Flow

In awake humans, active hyperventilation to a PaCO₂ of 16 mmHg initially reduced CBF by 40%, but during 4 h of sustained hypocapnia, CBF recovered to within 10% of baseline. Similar findings have been demonstrated in goats and piglets. Recovery of CBF during sustained hypocapnia appears to be mediated by a reduction in CSF (and extracellular) bicarbonate concentration and correction of extracellular pH (fig. 2). Glial cells appear to be important in the regulation of extracellular bicarbonate concentration because these cells contain large amounts of carbonic anhydrase, which can convert bicarbonate to CO₂ and water. Bicarbonate is the only buffer in extracellular brain fluid, and the reduction of bicarbonate concentration during sustained hypocapnia leads to a greater reduction in brain extracellular pH and a greater increase in CBF during any subsequent increase in CO₂. In support of this concept, after 6 h of sustained hypcapnia in awake goats, normocapnia caused marked cerebral hyperemia. Chronic hypocapnia in awake rabbits reduces the bicarbonate concentration of CSF and enhances the dilation of cerebral vessels to hypercapnia. Thus, in humans, acute termination of sustained hyperventilation could result in cerebral hyperemia and increased intracranial pressure (ICP). To avoid these events, termination of sustained hypocapnia is best accomplished by normalizing PaCO₂ over a period of hours, which allows the brain to increase the extracellular bicarbonate concentration and buffer the change in extracellular pH.

Sustained Hypercapnia and Cerebral Blood Flow

In anesthetized dogs, CBF returned to baseline values during 6 h of sustained hypercapnia, accompanied by an increase in CSF bicarbonate concentration and posthypercapnic CSF pH. In awake rabbits, chronic hypercapnia increased CSF bicarbonate concentration and attenuated the response of the cerebral circulation to further hypercapnia. In unanesthetized animals, however, hypercapnia can increase brain catechol-
Fig. 2. The effect of prolonged hyperventilation on brain extracellular pH, the partial pressure of carbon dioxide (Paco₂), and bicarbonate concentration. These values are a composite from those available in the literature. (A) Under normal conditions, brain Paco₂ is slightly higher, and pH and bicarbonate are slightly lower than arterial values. (B) When acute hyperventilation is initiated, brain alkalosis results in cerebral vasoconstriction, reducing cerebral blood flow (CBF), cerebral blood volume (CBV), and intracranial pressure (ICP). (C) After 6–12 h of sustained hypocapnia, extracellular brain pH recovers nearly to baseline levels due to a reduction of bicarbonate. At this point, cerebral vascular tone has recovered to baseline, which restores CBF and CBV to baseline. The ICP may not increase if other compensatory changes have occurred during hyperventilation. (D) If hyperventilation is acutely terminated, marked brain extracellular acidosis occurs due to both elevations of the partial pressure of carbon dioxide and a reduction of bicarbonate, resulting in cerebral vasodilatation and increased CBF, CBV, and possibly ICP.

amines and activate cerebral metabolism, indirectly causing an increase in CBF. Anesthetics may influence the response to hypocapnia by suppressing catecholamine release and preventing increased cerebral metabolism.

Carbon Dioxide and Cerebral Blood Volume

When hypocapnia is used to reduce ICP, it does so by reducing CBV and not CBF per se. Technical difficulties have limited the number of studies of Paco₂ and CBV. Evidence indicates that during alterations of Paco₂, changes in CBV are qualitatively similar to changes in CBF. In humans, baseline CBV is 3 or 4 ml per 100 g⁹⁴–⁹⁶ and is similar to values reported in baboons and monkeys when measurement techniques are similar.⁹⁷–⁹⁸ Other investigators have reported that CBV was larger in monkeys, dogs, and goats⁹⁸–⁹⁹ and smaller in rats.⁹⁰ In humans, hyperventilation reduces CBV by 0.049 ml·100 g⁻¹·min⁻¹·mmHg CO₂⁻¹,⁹⁰ which is similar to values in monkeys⁷¹ and goats.⁷⁸ Smaller changes in CBV have been reported in rats⁹⁰ and dogs.⁹⁹ Variations in CBV measurements likely reflect the intrinsic difficulty of measuring CBV and the measurement techniques. During sustained hyperventilation in dogs, CBV returns to baseline during a period of 4 h.¹⁰¹ The effect of Paco₂ on CBV is attenuated during hypotension.⁹⁸

Anesthesiology, V 88, No 5, May 1998

Anesthetics, Carbon Dioxide, and Cerebral Blood Flow

Inhaled Anesthetics. In awake humans, hyperventilation decreased CBF by 0.9 ml·100 g⁻¹·min⁻¹·mmHg CO₂⁻¹, and during anesthesia with 1% halothane (and nitrous oxide), hyperventilation decreased CBF by 2 ml·100 g⁻¹·min⁻¹·mmHg CO₂⁻¹.⁸¹ Although hyperventilation caused a greater reduction of CBF during anesthesia with halothane because halothane increased normocapnic CBF from 53 to 88 ml·100 g⁻¹·min⁻¹, absolute CBF was greater during hyperventilation with halothane compared with hyperventilation in the awake state.⁸¹ In halothane-anesthetized humans with a normocapnic CBF of 50 ml·100 g⁻¹·min⁻¹, CBF was reduced by 1.4 ml for each 1 mmHg reduction in Paco₂.⁶⁵ In halothane-anesthetized animals, hyperventilation always reduces CBF, and the slope of the reduction is directly related to the normocapnic CBF.⁶⁸ The data indicate that the cerebral circulation responds to hyperventilation during halothane anesthesia, and the response is increased when normocapnic CBF is increased.

In humans, reductions in CBF by hyperventilation was greater during isoflurane anesthesia than in the awake state.¹⁰⁵ The importance of normocapnic CBF in determining the response to hyperventilation during isoflurane anesthesia was demonstrated in dogs, where
normocapnic CBF during 2.8% isoflurane is approximately twice that during 1.4% isoflurane, and the reduction of CBF by hypoxemia during 2.8% isoflurane is also approximately twice that during 1.4% isoflurane. In humans and animals anesthetized with isoflurane, CBF is always reduced by hyperventilation, and the degree of reduction is directly related to normocapnic CBF. In humans and animals anesthetized with desflurane or sevoflurane, hypocapnia reduces CBF, and the degree of reduction is also related to normocapnic CBF.

In humans exposed to 70% nitrous oxide (N₂O), normocapnic CBF is 40–45 ml·100 g⁻¹·min⁻¹, and hypocapnia reduced CBF by approximately 1 ml·100 g⁻¹·min⁻¹·mmHg CO₂⁻¹. Hypocapnia-induced decrease in CBF is intact in goats exposed to 50% N₂O. In humans, the addition of N₂O to a propofol anesthetic does not alter middle cerebral artery flow velocity or the response of the cerebral circulation to hypocapnia. However, the addition of N₂O to a halothane anesthetic in rabbits increased normocapnic CBF and the slope of the response to hypocapnia.

Several studies support the concept that by increasing normocapnic CBF, inhaled anesthetics enhance the response of the cerebral circulation to hypocapnia. Although the slope of the response to hypocapnia can be increased by inhalational anesthetics, this does not mean that CBF can be reduced to lower absolute values during inhalational anesthesia (i.e., greater vasoconstriction produced). Increased normocapnic CBF during inhaled anesthetics results in greater absolute values in CBF during hypocapnia, despite the increased relative response to hypocapnia. During inhaled anesthesia when normocapnic CBF is comparable with the awake state, the reduction of CBF by hypocapnia is similar to that in the awake state.

Intravenous Anesthetics. During thiopental anesthesia in humans, hypocapnia reduces CBF, but as anesthetic depth increases and normocapnic CBF is reduced, the response of CBF to reduction of PaCO₂ also decreases. Similar findings have been reported for thiopental in baboons and dogs. During anesthesia with propofol in humans, the cerebral circulation responds to hypocapnia and hypercapnia. Compared with the awake state in humans, propofol anesthesia reduces middle cerebral artery flow velocity and the hypocapnic reduction of flow velocity. Further, the hypocapnia response of the cerebral circulation is less during deep levels of propofol anesthesia.

During anesthesia with etomidate in humans, CBF is linearly related to PaCO₂. During sedation with midazolam in humans, hypercapnia increases CBF. After induction of anesthesia with fentanyl and diazepam in humans, CBF is linearly related to PaCO₂. In animals anesthetized with either morphine or fentanyl with N₂O, hypocapnia reduces CBF. Although less well studied than inhaled anesthetics, data with intravenous anesthetics indicate that when normocapnic CBF is reduced, the response of CBF to hypocapnia is also reduced.

Carbon Dioxide and Cerebral Autoregulation

In adult and neonatal animals, a progressive reduction in cerebral perfusion pressure by hemorrhagic hypotension decreases the response of the cerebral circulation to carbon dioxide, and when perfusion pressure is less than the lower limits of cerebral autoregulation, the response to CO₂ is abolished. Other methods of producing hypotension generally yield a similar effect on the CO₂ response of the cerebral circulation. This may reflect the greater CBF during isoflurane, despite equal levels of hypotension. In these studies, CBF exceeded the value associated with rapid neuronal death (10 ml·100 g⁻¹·min⁻¹) during hypocapnia and normocapnia. Patients are rarely subjected to the profound degree of hypotension used in these studies and will likely maintain some response to hypocapnia during the lesser degree of hypotension used clinically. These studies suggest that in the normal brain, hypocapnia combined with hypotension does not reduce CBF to levels associated with cerebral injury.

Elevation of PaCO₂ to 50–60 mmHg attenuates cerebral autoregulation, and elevation of PaCO₂ to 70–90 mmHg abolishes autoregulation in primates and dogs. The cerebral circulation adapts during chronic hypercapnia, with autoregulation returning toward normal over several days, despite continued elevation of the PaCO₂ level. In contrast, in primates and dogs, hypocapnia does not appear to alter autoregulation, although absolute CBF is reduced by hypocapnia.

Carbon Dioxide Response in Neonates

In sheep, the response of the cerebral circulation to PaCO₂ increases during development from fetus to adult. In newborn dogs, hypocapnia has a minimal
effect on CBF, with the greatest effect occurring in areas of the brain with more flow. In newborn pigs, CBF is reduced only when PaCO₂ is <15 mmHg. However, hypercapnia does increase CBF in neonates.

Carbon Dioxide Response in Aging

Normocapnic gray matter blood flow has been reported to decrease during aging, as has the CO₂ responsiveness of gray matter blood flow. However, other investigators have reported that normocapnic CBF and hypercapnia-induced cerebral hyperemia were unaltered with aging. In awake humans, the effect of hypo- and hypercapnia on middle cerebral artery flow velocity was not different during aging. These data indicate that if CBF declines with aging, then the CO₂ responsiveness of CBF will also decrease.

Some investigators have reported in humans and primates that atherosclerosis reduces hypercapnia-induced cerebral hyperemia. However, others report that the response of the cerebral circulation to hypercapnia is normal in humans with atherosclerosis. Occlusive atherosclerosis could limit the vasodilator reserve of the cerebral circulation by limiting maximal blood flow to the brain, thus reducing hypercapnia-induced hyperemia. Conflicting data may arise from the variable nature of atherosclerosis. Similar data assessing the effect of atherosclerosis on the response of the cerebral circulation to hypcapnia are not available.

Carbon Dioxide Response and Hypertension

It is generally accepted that chronic hypertension does not alter baseline CBF in either humans or animal models of hypertension. In hypertensive rats, baseline CBF and the reduction in CBF during hypcapnia are not different than in normotensive rats. In humans with essential hypertension but without atherosclerosis, changes in CBF during hypcapnia and hypercapnia are similar to those in normotensive humans.

Carbon Dioxide Response and Hyperthermia

Brain temperature affects CBF and thus the response of the cerebral circulation to changes in PaCO₂. An important issue in the study of temperature effects on CBF is the method by which PaCO₂ is managed. As blood is cooled anaerobically, PaCO₂ decreases due to the increased solubility of CO₂, even though total CO₂ content remains constant. Blood gas tensions measure partial pressures of gas and are typically measured at 37°C. Gas tension measured at 37°C can be "corrected" to actual in vivo body temperature based on known changes in gas solubility. For example, a PaCO₂ of 40 mmHg at 37°C corrects to a PaCO₂ of 24 mmHg at 25°C in vivo. In contrast, to achieve a PaCO₂ of 40 mmHg at 25°C in vivo, the measured PaCO₂ at 37°C would be 68 mmHg.

Hypocapnia-induced Cerebral Ischemia in the Normal Brain

In humans, when PaCO₂ is reduced to 20–25 mmHg, CBF is reduced to 20–25 ml·100 g⁻¹·min⁻¹. However, CBF remains >20 ml·100 g⁻¹·min⁻¹ even during extreme hypocapnia in anesthetized (PaCO₂ = 10 mmHg) and nonanesthetized humans (PaCO₂ = 16 mmHg). In animals, reducing PaCO₂ <20 mmHg does not reduce CBF further. In nonanesthetized, normothermic humans and primates, the earliest signs and symptoms of cerebral ischemia such as confusion, inability to follow commands, focal neurologic deficits, and slowing of the electric activity of the brain, measured by an electroencephalogram (EEG), occur at global CBF levels of 20–30 ml·100 g⁻¹·min⁻¹. However, CBF must be reduced to <10 ml·100 g⁻¹·min⁻¹ to cause acute neuronal death. Hyperventilation can reduce CBF to a level associated with mild
cerebral ischemia, and in humans and animals, reducing
the \(P_{aCO_2} \) to 20–25 mmHg slows the EEG\(^{148,149} \) and
impairs mental function\(^{150,151} \) which suggests the occur-
cence of mild cerebral ischemia. In addition to reducing
CBF, marked alkalosis shifts the oxyhemoglobin disso-
ciation curve to the left, further limiting oxygen delivery
to the brain. Thus many investigators assume that hypox-
capnia-induced changes in EEG and mental activity re-
sult from cerebral ischemia.

A preliminary study in humans reported that hyper-
ventilation-induced slowing of the EEG could be re-
versed by hyperbaric oxygen, which suggests that
hyperventilation reduces oxygen delivery and limits
cerebral metabolism.\(^{149} \) Brain lactate concentration in-
creases during severe hypocapnia and is inversely propor-
tional to \(P_{aCO_2} \), which suggests insufficient oxygen
to maintain oxidative metabolism.\(^{152-154} \) Cortical oxy-
gen tension is reduced during hypocapnia, and severe
hypocapnia (10 mmHg \(P_{aCO_2} \)) can reduce cortical oxy-
gen tension even while CBF remains constant, which
suggests that increasing alkalosis further limits oxygen
delivery.\(^{155,156} \)

Although hyperventilation slows the EEG, hyperveni-
tilation-induced changes in the EEG may not rep-
resent cerebral ischemia. In humans, hypocapnia and hypoxia
produce different changes in spectral power bands of
the EEG.\(^{157} \) Further, because hyperbaric oxygen can in-
crease the frequency of the EEG, and cause seizures, it
is not clear if reversal of hyperventilation-induced EEG
changes represent a specific or nonspecific effect.\(^{158} \)
Brain lactate production is pH-dependent, and as pH in-
creases, lactate production increases independent of
oxygen availability.\(^{153,159} \)

In animals and humans, hypocapnia to a \(P_{aCO_2} \) 10–20
mmHg does not change cerebral metabolic rate of
oxygen use, which suggests that the brain is re-
ceiving sufficient oxygen to maintain oxidative metabo-
olism.\(^{65,80,160,161} \) Most\(^{152-154} \) but not all\(^{162-164} \) studies re-
port that brain levels of high-energy compounds such
as adenosine triphosphate (ATP) and phosphocreatine
are unchanged during severe hypocapnia, which sug-
gests that sufficient oxygen is reaching the brain to
maintain oxidative phosphorylation. In newborn an-
mals, cerebral metabolism is not impaired during severe
hypocapnia (\(P_{aCO_2} < 20 \) mmHg),\(^{161} \) and brain high en-
ergy stores are not reduced.\(^{120} \)

Overall, these studies indicate that, in the normal
brain, hypocapnia can reduce CBF to the threshold of
cerebral ischemia, but not to CBF associated with
rapid neuronal death. If hypocapnia causes cerebral
ischemia in the normal brain, it must be mild, and not
associated with gross disturbances of brain oxidative
metabolism. However, the long-term effect of hyper-
ventilation on the normal brain are not known, be-
cause no data are available regarding hyperventi-
tilation-induced loss of neurons or permanent functional
alterations.

Summary of Carbon Dioxide and Cerebral
Vascular Regulation

The cerebral circulation is very responsive to changes in
\(CO_2 \); at approximately 20–80 mmHg \(P_{aCO_2} \), CBF
changes 1–2 ml·100 g\(^{-1}\)·min\(^{-1}\)·mmHg \(CO_2 \)\(^{-1}\) in many
species under various conditions (table 1). The res-
ponse of the cerebral circulation to changes in \(P_{aCO_2} \)
depends on resting CBF, and the slope of the response
to \(CO_2 \) increases as normocapnic CBF increases. At both
extremes of \(P_{aCO_2} \), the response of the cerebral circula-
tion is attenuated or abolished. During sustained alter-
ation of \(P_{aCO_2} \), CBF recovers to baseline during a period
of hours as brain extracellular pH corrects. During alter-
ations in \(P_{aCO_2} \), CBV changes in parallel with changes in
CBF, but the relative change is less marked. The
cerebral circulation maintains its response to \(CO_2 \) dur-
ing administration of anesthetics, but the relative re-
ponse of the cerebral circulation to change in \(P_{aCO_2} \)
may be altered if anesthetics alter normocapnic CBF.
Hypotension to less than the lower limit of autoregula-
tion can abolish the response of CBF to hypocapnia,
and hypercapnia can attenuate or abolish cerebral auto-
regulation. The response of the cerebral circulation to
\(CO_2 \) increases during development from neonate to
adult. However, aging does not alter the response to
changes in \(P_{aCO_2} \) as long as normocapnic CBF is un-
changed. Hypertension does not affect the response of
the cerebral circulation to \(P_{aCO_2} \), but atherosclerosis
may limit hypocapnia-induced cerebral vasodilation.
Hypothermia reduces CBF and the response of CBF to
changes in \(P_{aCO_2} \). Many studies have tried to dem-
strate hypocapnia-induced cerebral ischemia in the
normal brain, but clear evidence for this is lacking.

Clinical Use of Hypocapnia and
Hypercapnia

Manipulation of \(P_{aCO_2} \) is common in both the oper-
ating room and the intensive care unit, with hypoca-
Table 1. Summary of CO₂ and Cerebral Physiology

<table>
<thead>
<tr>
<th>Cerebral Blood Flow (CBF)</th>
<th>Cerebral Blood Volume (CBV)</th>
<th>Cerebral Autoregulation</th>
<th>CO₂ Response and Anesthetics</th>
<th>CO₂ Response and Disease/Injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBF changes 1-2 ml·100 g⁻¹·min⁻¹ for each 1 mmHg change in CO₂ between 20 and 80 mmHg CO₂</td>
<td>CBV changes 0.05 ml/100 g for each 1 mmHg change in CO₂</td>
<td>Modest hypercapnia impairs and marked hypercapnia abolishes autoregulation</td>
<td>CO₂ response is maintained during inhaled and intravenous anesthetics</td>
<td>Hypercapnic response intact with hypertension</td>
</tr>
<tr>
<td>Slope of the response depends on normocapnic CBF</td>
<td>CBV returns to baseline during sustained alteration of CO₂</td>
<td>Hypotension below the lower limit of autoregulation abolishes hypoxic cerebral vasoconstriction</td>
<td>Relative response to hypoxia depends on normocapnic CBF</td>
<td>Hypoxic response present with brain injury, but may be attenuated</td>
</tr>
<tr>
<td>CBF returns to baseline during sustained alteration of CO₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CO₂ AND THE CEREBRAL CIRCULATION

Aemia being used to treat increased ICP and both hypcapnia and hypercapnia used to treat cerebral ischemia. This section reviews the clinical and experimental evidence regarding the manipulation of PaCO₂ in patient care.

Carbon Dioxide in the Management of Cerebral Ischemia

The pathophysiology and therapy of cerebral ischemia is complex and poorly understood, and a full overview of cerebral ischemia is beyond the scope of this review. In an attempt to enhance blood flow to ischemic brain, PaCO₂ has been manipulated during cerebral ischemia. However, manipulation of PaCO₂ affects not only CBF but also brain pH, which may affect cerebral ischemia independent of CBF. Further, small variations in brain temperature can significantly affect the severity of a cerebral ischemic insult, and many studies did not adequately control brain temperature. It is difficult to retrospectively assess the interactions of these factors during studies of PaCO₂ manipulation and cerebral ischemia. However, this section will focus on the effect of PaCO₂ manipulation on CBF during cerebral ischemia, and on how such changes in CBF may affect cerebral ischemia and patient care.

Focal Cerebral Ischemia. Cerebral embolization or occlusion of cerebral vessels results in focal cerebral ischemia. Hyperventilation is proposed to be beneficial during focal cerebral ischemia by constricting the nonischemic brain and diverting blood flow to the ischemic brain (known as Robin Hood or inverse steal). This hypothesis assumes that the ischemic brain lacks hypocapnic-induced vasoconstriction. An early study in dogs reported that hyperventilation reduced the volume of brain infarction after middle cerebral artery occlusion, which suggests a favorable redistribution of blood flow by hyperventilation. However, the same investigators and others later reported in cats and primates that hyperventilation did not reduce the volume of brain infarction after middle cerebral artery occlusion. In cats with middle cerebral artery occlusion, hyperventilation does not increase blood flow to the ischemic brain.

Furthermore, during focal cerebral ischemia in primates, hyperventilation exacerbated the reduction in brain high-energy compounds and impaired oxidative metabolism in the ischemic brain, which suggests that hyperventilation exacerbated cerebral ischemia. In rats with middle cerebral artery occlusion, hyperventilation enlarges the area of the ischemic brain. In humans who have had a stroke, CBF in the ischemic brain is low and can be further reduced by hyperventilation. However, blood flow to the ischemic brain is increased in approximately 10% of patients who have had a stroke. Hyperventilation of humans with acute, focal stroke does not alter patient outcome.

Temporary focal cerebral ischemia may be induced in humans during carotid cross-clamping for endarterectomy. Hypocapnia during carotid cross-clamping does not reduce the incidence of new neurologic deficits after carotid endarterectomy, which suggests that CBF is not favorably redistributed by hypocapnia. When CBF was measured during carotid cross-clamping in humans, hypocapnia decreased the CBF in the ischemic cerebral hemisphere in three of seven patients but in-

Anesthesiology, V 88, No 5, May 1998
creased CBF in one of seven patients. A case report also indicates that hypocapnia combined with hypertension was effective in reversing ischemic EEG changes during carotid cross-clamping.

Thus, although an early animal study suggested that hyperventilation was beneficial during focal cerebral ischemia, other experimental studies indicate that hyperventilation is not beneficial and may be harmful by further reducing CBF in the ischemic brain. In humans with focal cerebral ischemia, hyperventilation appears to cause a favorable redistribution of CBF (inverse steal) in approximately 10% of patients. Assessment of whether hyperventilation is helpful or harmful in individual patients with focal cerebral ischemia requires measurement of CBF, cerebral function, or both. Furthermore, because of the transient effect of PaCO₂ alterations on CBF, any enhancement of CBF will likely be temporary.

Hypcapnia has been proposed to be beneficial in focal ischemia by vasodilating the ischemic brain and increasing blood flow. Hypcapnia may also decrease blood flow to the ischemic brain by vasodilating the normal brain and diverting blood flow from the ischemic brain, which cannot be further diluted by hypcapnia (intracerebral steal). In animals with middle cerebral artery occlusion, hypcapnia does not change or decreases blood flow in the ischemic brain. In animals with focal ischemia, hypcapnia does not dilate arteries in the ischemic brain cortex. In humans who have had acute stroke, hypcapnia does not increase blood flow in the ischemic brain. Several days after the onset of focal stroke in humans, the response of CBF to hypcapnia is more heterogeneous, with some patients demonstrating increased and others decreased flow in the ischemic brain. However, in dogs with focal cerebral ischemia, modest hypcapnia increased blood flow in the ischemic brain and improved somatosensory evoked potentials. The positive outcome of both hypcapnia and hypocapnia studies in dogs may reflect differences in the collateral cerebral circulation in dogs, which predisposes these animals to benefit from alterations of PaCO₂. Overall, however, data indicate that hypcapnia is not beneficial in focal cerebral ischemia.

Global Ischemia. Global cerebral ischemia occurs during cardiac arrest, after resuscitation, cerebral hyperfusion or hypoperfusion can occur. In an attempt to enhance CBF in the post-arrest state, PaCO₂ has been manipulated. However, after global cerebral ischemia in animals, the response of the cerebral circulation to hypocapnia is attenuated or abolished, and the response to hyperventilation is markedly attenuated. In newborn piglets, CBF can be reduced by hyperventilation, but hyperventilation does not increase CBF after global ischemia. However, after global ischemia in juvenile pigs, the CO₂ reactivity of the cerebral circulation is normal 2 h after ischemia. In rabbits subjected to global cerebral ischemia, hypocapnia decreases the release of glutamate and glycine during ischemia, which suggests less severe neuronal damage. After global cerebral ischemia in dogs, hyperventilation but not hypocapnia delayed electrophysiologic recovery, which suggests that hyperventilation was detrimental. In dogs, hyperventilation improved the brain histopathology score after 15 min of cardiac arrest. Thus, although some data suggest that hypocapnia can be beneficial after global ischemia, it is not possible to draw a definitive conclusion regarding potential benefits. Furthermore, most studies indicate that the response of the cerebral circulation to CO₂ is markedly attenuated or abolished immediately after global cerebral ischemia. Similar data addressing manipulation of PaCO₂ after cardiac arrest in humans are not available.

Hyperventilation and Intracranial Pressure

Hyperventilation is a common component in the management of increased ICP. Most evidence regarding hyperventilation in the management of increased ICP is derived from studies of head-injured patients. In the late 1960s and early 1970s, hyperventilation was proposed to decrease the mortality rate in patients after head injury. However, these reports are difficult to interpret because often the PaCO₂ was not measured. More importantly, the control patients in these studies breathed spontaneously with a native airway. Thus it is impossible to assess the degree of hyperventilation achieved and the contribution of airway maintenance and possible improved oxygenation on the outcomes of these studies.

During the late 1970s and 1980s, several authors reported that the mortality rate for head injury was reduced if a multimodal treatment approach was used that included hyperventilation. However, other investigators reported that mechanical ventilation did not affect outcome in patients with head injury. In 1991, a randomized, prospective trial of head injured patients reported that hyperventilation initially worsened outcome in a subset of patients, but by 1 yr after injury
there was no difference between hyperventilated and nonhyperventilated patients.200 Due to inherent problems with this study, including hyperventilation of patients with normal ICP and relatively small differences in PaCO2 between the hypocapnic and normocapnic groups, it is difficult to draw conclusions about the effect of hyperventilation on outcome in head injured patients.200

After head injury, CSF lactate concentration increases,201 and hyperventilation has been proposed as beneficial by correcting brain acidosis.202 However, in cats with severe fluid-percussion brain injury, brain intracellular pH decreases only transiently after injury,205 and hyperventilation increases brain lactate production.204 Thus brain intracellular acidosis appears limited after injury, and hyperventilation may exacerbate acidosis by increasing lactate production.

Cerebral blood flow can be low and ICP normal after head injury, especially in the first hours after injury.205 Some authors have proposed that decreased CBF after head injury represents cerebral ischemia.205 However, cerebral metabolism is also decreased after head injury, and the reduction in CBF may not represent cerebral ischemia but rather may reflect appropriate flow-metabolism coupling.206 Because the cerebral circulation usually retains some responsiveness to CO2 after head injury, hyperventilation can reduce CBF further.173,206-208 However, reduction in CBF alone is not sufficient to produce cerebral ischemia, because the threshold for ischemia depends not only on flow but also on metabolism. In some patients with head injury, hyperventilation reduces CBF, increases arteriovenous oxygen extraction, and reduces the cerebral metabolic rate of oxygen, which suggests the onset of cerebral ischemia.206 In animals with ICP elevated to the threshold of cerebral ischemia, hyperventilation reduced brain phosphocreatine, which suggests cerebral ischemia.207 Thus cerebral metabolic evidence suggests that after head injury, hyperventilation can reduce CBF to the point of cerebral ischemia.

Acute hyperventilation is effective in controlling increased ICP,210,211 and in contrast to the studies just noted, hyperventilation can increase CBF by reducing ICP.212 However, because hyperventilation has transient effects on CBF and CBV, it is only a temporary measure to control increased ICP.205 Current recommendations for PaCO2 management after brain injury discourage the use of prophylactic hyperventilation and suggest that hyperventilation should be used only when increased ICP is refractory to other methods of control.205

Recent reports suggest that measurement of an objective parameter of cerebral oxygenation or CBF can assess the effect of hyperventilation on the brain metabolic state in head injured patients.213,214 The ability to optimize cerebral perfusion would allow more rational treatment of individual patients. However, the methods proposed have not been evaluated prospectively, and their effect on patient outcome is unknown.

Based on clinical experience and experimental data, increased ICP can be reduced by acute hyperventilation. As ICP is reduced, cerebral perfusion pressure is increased and CBF may be increased. However, after head injury, despite the presence of coma, some patients may have reduced CBF and normal ICP. When ICP is normal, there is no benefit to hyperventilation, and there may be detriment by further reducing CBF. Prophylactic or indiscriminate use of hyperventilation in head injured patients should be avoided, and hyperventilation should be reserved for the acute treatment of increased ICP. Because the effect of hyperventilation on CBF, CBV, and ICP is transient, other interventions are necessary for long-term control of ICP.

Hyperventilation and Subarachnoid Hemorrhage
In primates, subarachnoid hemorrhage resulting in coma and hemiparesis does not alter the response of the cerebral circulation to hypocapnia, although the hypercapnia-induced increase in CBF was reduced by 50%.215 In humans with subarachnoid hemorrhage, those with no or mild angiographic vasospasm have a normal response to hypocapnia.215 However, in patients with severe vasospasm documented by angiography, CBF responded less to hyperventilation.215 All patients in this study, including those with relatively low normocapnic CBF (≤25 ml·100 g⁻¹·min⁻¹), responded to hyperventilation, even though the response was attenuated in patients with low normocapnic CBF. In patients with severe cerebral vasospasm, attenuation of hypocapnia-induced cerebral vasoconstriction may be due to preexisting constriction from vasospasm.

Intraoperative Hyperventilation
Hyperventilation is considered an integral component of the anesthetic management of patients undergoing intracranial surgery. Hypocapnia is proposed to be beneficial by reducing CBV and ICP, thus allowing brain tissue to be retracted with less force, thereby enhancing
operative exposure. Hyperventilation was proposed as an adjunct to anesthetic management in intracranial operations in the late 1950s. Before then, most patients undergoing intracranial operations breathed spontaneously while they were anesthetized. Although it was recognized that hypercapnia increased CBV and ICP, early discussions of anesthetic management of patients having neurosurgery do not mention controlled ventilation or hyperventilation. In 1957, a subjective report detailed the use of intraoperative hyperventilation to improve intracranial operating conditions. Later, when ICP and \(P_{aCO_2} \) were measured in anesthetized patients having intracranial surgery, \(P_{aCO_2} \) and ICP were frequently elevated (\(P_{aCO_2} > 60 \text{ mmHg} \)) and "hyperventilation" only restored \(P_{aCO_2} \) to normal levels. Subsequent reports supported the use of intraoperative hyperventilation, but these reports are subjective rather than critical evaluations of the technique. All of these reports compare spontaneous ventilation to hyperventilation, with hyperventilation usually defined based on delivered minute ventilation rather than measurement of \(P_{aCO_2} \).

In the early 1960s, hyperventilation of patients undergoing craniotomy was reported to reduce tension of the dura, as assessed in an unblinded fashion by surgeons. However, \(P_{aCO_2} \) was not measured, anesthetic agents were not standardized, and hyperventilation was compared with spontaneous ventilation. These investigators also reported that in spontaneously breathing patients, osmotic dehydrating agents were as effective as hyperventilation in reducing dural tension. Although these anecdotal reports do not indicate if hyperventilation resulted in hypocapnia or normocapnia, they began the tradition of hyperventilation for patients undergoing intracranial surgery.

By the mid-1960s, investigators reported that halothane could increase CBF and ICP. Hyperventilation before administration of halothane was proposed as a method to attenuate halothane-induced increases in ICP. Isoflurane was later reported to increase CBF and ICP and hyperventilation was again proposed as a method to offset isoflurane-induced increases in ICP. In contrast to halothane, isoflurane-mediated elevations of ICP could be prevented when hyperventilation was instituted concomitantly with the administration of isoflurane. In dogs, 2% isoflurane significantly increased CBV, and hyperventilation attenuated this effect. However, in dogs with supratentorial space-occupying lesions, administration of isoflurane after induction of hyperventilation does not increase ICP further.

In humans undergoing craniotomy, the degree of hyperventilation required to prevent an inhaled anesthetic-induced increase in ICP appears to vary, which reflects individual variability in intrinsic mechanisms to compensate for increased CBV. In one study of patients with intracranial tumors, ICP was not different (12–15 mmHg) during modest hypocapnia (\(P_{aCO_2} \approx 30 \text{ mmHg} \)) during anesthesia with either isoflurane with nitrous oxide or propofol with fentanyl. However, other investigators reported in patients with intracranial tumors that isoflurane increased ICP from 14 to 22 mmHg despite hyperventilation to an end-tidal CO\(_2\) level of 26 mmHg. In patients undergoing CSF shunt procedures, isoflurane increased ICP from 4 to 26 mmHg, and subsequent hyperventilation reduced ICP to 2 mmHg. Although hyperventilation is commonly used in patients undergoing intracranial surgery, the effect of hyperventilation on patient outcome has not been evaluated objectively. Furthermore, the relative degree of hyperventilation required also has not been determined. Hyperventilation can reduce increased ICP and can offset the effect of inhaled anesthetics on ICP. However, due to the variable nature of intracranial disease, the degree of hyperventilation required in individual patients can only be assessed on an individual basis. The need for and degree of hyperventilation in patients should be guided by preoperative signs and symptoms of increased ICP, by inspection of intracranial contents during craniotomy, and by measurement of ICP.

Summary of the Clinical Use of Hypocapnia and Hyperventilation

During permanent focal cerebral ischemia, hyperventilation does not improve outcome in humans and can exacerbate cerebral ischemia in animals. In a minority of patients, hyperventilation can increase blood flow during temporal and permanent focal cerebral ischemia. Hypocapnia also does not appear to be beneficial with focal cerebral ischemia. Manipulation of \(P_{aCO_2} \) after global ischemia has been studied less, and definite conclusions regarding the use of \(P_{aCO_2} \) manipulation are not available. However, immediately after global ischemia, the response of the cerebral circulation to CO\(_2\) is attenuated or abolished. After head injury, acute hyperventilation can reduce increased ICP and increase cerebral perfusion. However, head injury can reduce CBF in humans, and hyperventilation can further reduce CBF. In

Anesthesiology. V 88, No 5, May 1998
CO2 AND THE CEREBRAL CIRCULATION

animals with elevated ICP, hyperventilation can reduce both CBF and brain energy stores. Although control of elevated ICP is an important goal after head injury, there is no objective evidence that hyperventilation improves outcome in patients with head injury. Current recommendations are to avoid prophylactic hyperventilation in brain injured patients and to reserve hyperventilation to treat increased ICP that cannot be controlled by other methods.

Intraoperative hyperventilation appears to be a clinically useful intervention to control ICP, to offset the effect of inhaled anesthetics, and to enhance operative exposure. However, intraoperative hyperventilation has not been evaluated rigorously, and the overall effect on patient outcome is unknown. The degree of intraoperative hyperventilation necessary in individual patients requires assessment of preoperative signs and symptoms of increased ICP, intraoperative inspection of intracranial contents, and measurement of ICP. Excessive or indiscriminate use of intraoperative hyperventilation may not be innocuous, because some evidence suggests that hyperventilation can further reduce CBF in the brain with low normocapnic blood flow.

Conclusions

In the past 100 yr, a great deal has been learned regarding CO2 and the cerebral circulation. Today much is known about the mechanisms of CO2-mediated changes in cerebral vascular tone. A key step in CO2-mediated signaling is alteration of extracellular brain pH. After alterations in pH, changes in intracellular calcium concentration are the final common mediator in both hypercapnia and hypocapnia. In adults animals, NO and cGMP contribute to modest but not marked hypercapnia-induced dilation of cerebral blood vessels. However, NO and cGMP may not be the direct vasodilators, but rather may function in a "permissive" role. In neonates, cyclo-oxygenase products and cAMP are important in hypercapnia-induced cerebral vasodilation, but they also may not be the direct vasodilators. Finally, activation of KATP channels is important in cerebral vasodilation to modest hypercapnia in adults.

Between PaCO2 values of 20 and 80 mmHg, CBF changes 1 to 2 ml·100 g−1·min−1 for each 1 mmHg change in PaCO2. The change in CBF is related to the normocapnic CBF, and when flow is increased, the relative response to hypocapnia is increased. During sustained alterations of PaCO2, CBF returns to baseline over several hours due to a correction of brain extracellular pH. Anesthetics that increase CBF enhance the reduction of CBF by hypocapnia, and anesthetics that reduce CBF reduce the response. Cerebral blood volume changes in a manner that is similar to CBF, but the relative change is less marked. Hypotension less than the lower limit of autoregulation attenuates or abolishes the response of the cerebral circulation to changes in PaCO2. Hypercapnia can attenuate or abolish autoregulation. The response of CBF to changes in PaCO2 increases during development from neonate to adult. However, during aging the response to hypocapnia does not change as long as normocapnic CBF is unchanged. Untreated hypertension does not affect the response of the cerebral circulation to changes in PaCO2. Hypothermia reduces normocapnic CBF and the response of CBF to changes in PaCO2. Many studies have tried to demonstrate hypocapnic-induced ischemia in the normal brain, but clear evidence for this is lacking.

During temporary focal cerebral ischemia, neither hypercapnia nor hypocapnia improve and in fact may worsen outcome. Hypocapnia has been reported to increase blood flow to the ischemic brain during temporary and permanent focal cerebral ischemia in a minority of patients. Animal data suggest that hyperventilation can improve some indicators of cerebral well-being after global cerebral ischemia. However, no data are available to assess the effect of hyperventilation after global ischemia in humans. When ICP is increased, acute hyperventilation can reduce ICP and may increase CBF. However, the effect of hyperventilation on patient outcome is uncertain. Current recommendations are to reserve hyperventilation for the treatment of increased ICP that cannot be controlled by other methods. After subarachnoid hemorrhage, the cerebral circulation responds to reductions in PaCO2, although the response may be attenuated if vasospasm is present. Intraoperative hyperventilation appears to be useful in controlling ICP, offsetting the effect of inhaled anesthetics, and improving intracranial operating conditions. However, objective data on intraoperative hyperventilation and operative exposure or patient outcome are lacking. In the clinical care of patients in the operating room, the need for and degree of hyperventilation can be guided only by assessment of the signs and symptoms of increased ICP, inspection of intracranial contents during craniotomy, and measurement of ICP. As in the inten-

Anesthesiology, V 88, No 5, May 1998
sive care unit; it would be prudent to avoid unnecessary hyperventilation in the operating room.

The author thanks Drs. Bradley J. Hindman, Frank M. Faraci, and Costantino Iadecola for helpful suggestions.

References

CO₂ AND THE CEREBRAL CIRCULATION

52. Kinoshita H, Katusic ZS: Role of potassium channels in relaxation of isolated canine basilar arteries to acetylcholine. Stroke 1997; 28:433–8

68. Scheller MS, Todd MM, Drummond JD: Isoflurane, halothane, and regional cerebral blood flow at various levels of PaCO₂ in rabbits. ANESTHESIOLOGY 1986; 64:598–604

69. Wollman H, Alexander SC, Cohen PJ, Smith TC, Chase PE,

104. Kaieda R, Todd MM, Warner DS: The effects of anesthetics and Paco2 on the cerebrovascular, metabolic and electroencephalo-

106. McPherson RW, Brian JE Jr, Traystman RJ: Cerebrovascular responsiveness to carbon dioxide in dogs with 1.4% and 2.8% isoflurane. Anesthesiology 1989; 70:843 - 50

139. Novack P, Shinkin HA, Bortin L, Goluboff B, Soffe AM: The effects of carbon dioxide inhalation upon the cerebral blood flow

Anesthesiology, V 88, No 5, May 1998

178. Artru AA, Merriman HG: Hypocapnia added to hypertension to reverse EEG changes during carotid endarterectomy. Anesthesiology 1989; 70:1016–8

208. Fiesche C, Beduschi A, Agnoli A, Battistini N, Collice M,