Opioids may produce life-threatening respiratory depression and death from their actions at the opioid receptors within the brainstem respiratory neuronal network. Since there is an increasing number of conditions where the administration of the opioid receptor antagonist naloxone is inadequate or undesired, there is an increased interest in the development of novel reversal and prevention strategies aimed at providing efficacy close to that of the opioid receptor antagonist naloxone but with fewer of its drawbacks such as its short duration of action and lesser ability to reverse high-affinity opioids, such as carfentanil, or drug combinations. To give an overview of this highly relevant topic, the authors systematically discuss predominantly experimental pharmacotherapies, published in the last 5 yr, aimed at reversal of opioid-induced respiratory depression as alternatives to naloxone. The respiratory stimulants are discussed based on their characteristics and mechanism of action: nonopioid controlled substances (e.g., amphetamine, cannabinoids, ketamine), hormones (thyrotropin releasing hormone, oxytocin), nicotinic acetylcholine receptor agonists, ampakines, serotonin receptor agonists, antioxidants, miscellaneous peptides, potassium channel blockers acting at the carotid bodies (doxapram, ENA001), sequestration techniques (scrubber molecules, immunopharmacotherapy), and opioids (partial agonists/antagonists). The authors argue that none of these often still experimental therapies are sufficiently tested with respect to efficacy and safety, and many of the agents presented have a lesser efficacy at deeper levels of respiratory depression, i.e., inability to overcome apnea, or have ample side effects. The authors suggest development of reversal strategies that combine respiratory stimulants with naloxone. Furthermore, they encourage collaborations between research groups to expedite development of viable reversal strategies of potent synthetic opioid-induced respiratory depression.

You do not currently have access to this content.