Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Article Type
Topics
Tags
TOC Heading
Date
Availability
1-2 of 2
Daniel Dirkmann
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Articles
Daniel Dirkmann, Dr. med., Martin W. Britten, Henning Pauling, Dr. med., Juliane Weidle, Dr. med., Lothar Volbracht, Dr. med., Klaus Görlinger, Dr. med., Jürgen Peters, Prof. Dr. med.
Journal:
Anesthesiology
Anesthesiology. June 2016; 124(6):1277–1285
Published: June 2016
Abstract
Background Sugammadex prolongs activated partial thromboplastin time (aPTT) and prothrombin time (PT) suggestive of anticoagulant effects. To pinpoint its presumed anticoagulant site of action, the authors assessed Sugammadex’s impact on a panel of coagulation assays. Methods Sugammadex, Rocuronium, Sugammadex and Rocuronium combined, or saline were added to blood samples from healthy volunteers and analyzed using plasmatic ( i.e. , aPTT, thrombin time, and fibrinogen concentration) (n = 8 each), PT (quick), activities of plasmatic coagulation factors, and whole blood (extrinsically and intrinsically activated thromboelastometry) assays (n = 18 each). Furthermore, dose-dependent effects of Sugammadex were also assessed (n = 18 each) in diluted Russel viper venom time (DRVVT) assays with low (DRVVT1) and high (DRVVT2) phospholipid concentrations and in a highly phospholipid-sensitive aPTT assay. Results Sugammadex increased PT (+9.1%; P < 0.0001), aPTT (+13.1%; P = 0.0002), and clotting time in extrinsically (+33.1%; P = 0.0021) and intrinsically (+22.4%; P < 0.0001) activated thromboelastometric assays. Furthermore, activities of factors VIII, IX, XI, and XII decreased (−7%, P = 0.009; −7.8%, P < 0.0001; −6.9%, P < 0.0001; and −4.3%, P = 0.011, respectively). Sugammadex dose-dependently prolonged both DRVVT1 and the highly phospholipid-sensitive aPTT assays, but additional phospholipids in the DRVVT2 assay almost abolished these prolongations. Thrombin time, a thromboelastometric thrombin generation assay, clot firmness, clot lysis, fibrinogen concentration, and activities of other coagulation factors were unaltered. Rocuronium, Sugammadex and Rocuronium combined, and saline exerted no effects. Conclusion Sugammadex significantly affects various coagulation assays, but this is explainable by an apparent phospholipid-binding effect, suggesting that Sugammadex`s anticoagulant effects are likely an in vitro artifact. Abstract Sugammadex affects various coagulation assays by the binding of phospholipids by the cyclodextrin molecules, and this represents an in vitro artifact observed in commercial phospholipid-dependent assays such as the activated partial thromboplastin time.
Articles
Klaus Görlinger, Dr. med, Daniel Dirkmann, Dr. med, Alexander A. Hanke, Dr. med, Markus Kamler, PD Dr. med, Eva Kottenberg, PD Dr. med, Matthias Thielmann, PD Dr. med, Heinz Jakob, Prof. Dr. med, Jürgen Peters, Prof. Dr. med
Journal:
Anesthesiology
Anesthesiology. December 2011; 115(6):1179–1191
Published: December 2011
Abstract
Introduction Blood transfusion is associated with increased morbidity and mortality. We developed and implemented an algorithm for coagulation management in cardiovascular surgery based on first-line administration of coagulation factor concentrates combined with point-of-care thromboelastometry/impedance aggregometry. Methods In a retrospective cohort study including 3,865 patients, we analyzed the incidence of intraoperative allogeneic blood transfusions (primary endpoints) before and after algorithm implementation. Results Following algorithm implementation, the incidence of any allogeneic blood transfusion (52.5 vs. 42.2%; P < 0.0001), packed red blood cells (49.7 vs. 40.4%; P < 0.0001), and fresh frozen plasma (19.4 vs. 1.1%; P < 0.0001) decreased, whereas platelet transfusion increased (10.1 vs. 13.0%; P = 0.0041). Yearly transfusion of packed red blood cells (3,276 vs. 2,959 units; P < 0.0001) and fresh frozen plasma (1986 vs. 102 units; P < 0.0001) decreased, as did the median number of packed red blood cells and fresh frozen plasma per patient. The incidence of fibrinogen concentrate (3.73 vs. 10.01%; P < 0.0001) and prothrombin complex concentrate administration (4.42 vs. 8.9%; P < 0.0001) increased, as did their amount administered per year (179 vs. 702 g; P = 0.0008 and 162 × 10³ U vs. 388 × 10³ U; P = 0.0184, respectively). Despite a switch from aprotinin to tranexamic acid, an increase in use of dual antiplatelet therapy (2.7 vs. 13.7%; P < 0.0001), patients' age, proportion of females, emergency cases, and more complex surgery, the incidence of massive transfusion [(≥10 units packed red blood cells), (2.5 vs. 1.26%; P = 0.0057)] and unplanned reexploration (4.19 vs. 2.24%; P = 0.0007) decreased. Composite thrombotic/thromboembolic events (3.19 vs. 1.77%; P = 0.0115) decreased, but in-hospital mortality did not change (5.24 vs. 5.22%; P = 0.98). Conclusions First-line administration of coagulation factor concentrates combined with point-of-care testing was associated with decreased incidence of blood transfusion and thrombotic/thromboembolic events.
Advertisement
Advertisement