Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Article Type
TOC Heading
Date
Availability
1-1 of 1
Mika Tsujita
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Articles
Andrey B. Petrenko, M.D., Ph.D., Mika Tsujita, Ph.D., Tatsuro Kohno, M.D., Ph.D., Kenji Sakimura, Ph.D., Hiroshi Baba, M.D., Ph.D.
Journal:
Anesthesiology
Anesthesiology. June 2007; 106(6):1177–1185
Published: June 2007
Abstract
Background T-type calcium channels regulate neuronal membrane excitability and participate in a number of physiologic and pathologic processes in the central nervous system, including sleep and epileptic activity. Volatile anesthetics inhibit native and recombinant T-type calcium channels at concentrations comparable to those required to produce anesthesia. To determine whether T-type calcium channels are involved in the mechanisms of anesthetic action, the authors examined the effects of general anesthetics in mutant mice lacking alpha1G T-type calcium channels. Methods The hypnotic effects of volatile and intravenous anesthetics administered to mutant and C57BL/6 control mice were evaluated using the behavioral endpoint of loss of righting reflex. To investigate the immobilizing effects of volatile anesthetics in mice, the minimum alveolar concentration (MAC) values were determined using the tail-clamp method. Results The 50% effective concentration for loss of righting reflex and MAC values for volatile anesthetics were not altered after alpha1G channel knockout. However, mutant mice required significantly more time to develop anesthesia/hypnosis after exposure to isoflurane, halothane, and sevoflurane and after intraperitoneal administration of pentobarbital. Conclusions The 50% effective concentration for loss of righting reflex and MAC values for the volatile anesthetics were not altered after alpha1G calcium channel knockout, indicating that normal functioning of alpha1G calcium channels is not required for the maintenance of anesthetic hypnosis and immobility. However, the timely induction of anesthesia/hypnosis by volatile anesthetic agents and some intravenous anesthetic agents may require the normal functioning of these channel subunits.
Advertisement
Advertisement